34 research outputs found

    Performance Evaluation of Triple Play Services Delivery with E2E QoS Provisioning

    Get PDF
    The creation and wide use of new high quality demanding services (VoIP, High Quality Video Streaming) and the delivery of them over already saturated core and access network infrastructures have created the necessity for E2E QoS provisioning. Network Providers use at their infrastructures several kinds of mechanisms and techniques for providing QoS. Most known and widely used technologies are MPLS and DiffServ. The IEEE 802.16-2004 standard (WiMAX) refers to a promising wireless broadband technology with enhanced QoS support algorithms. This document presents an experimental network infrastructure providing E2E QoS, using a combination of MPLS and DiffServ technologies in the core network and WiMAX technology as the wireless access medium for high priority services (VoIP, High Quality Video Streaming) transmission. The main scope is to map the traffic prioritization and classification attributes of the core network to the access network in a way which does not affect the E2E QoS provisioning. The performance evaluation will be done by introducing different kinds of traffic scenarios in a saturated and overloaded network environment. The evaluation will prove that this combination made feasible the E2E QoS provisioning while keeping the initial constrains as well as the services delivered over a wireless network

    A Web-based Database System for Providing Technical Information on ATM Networking Platforms

    Get PDF
    This paper presents a Web-based database hosting technical information about pioneering ATM networking platforms, associated research activities engaging these platforms, and related important trials conducted in the framework of these research activities. The paper outlines the organisation and structure of the information content in the database and discusses methods of access through the WWW interface. Besides the “static” information offered by the database, other Java-based tools provide for the on-line monitoring of the status of the ATM platforms and for manipulating data arising from technological trials on these platforms. The integration of these tools with the database, under a common WWW interface is discussed

    System architecture and deployment scenarios for SESAME: small cEllS coordinAtion for Multi-tenancy and Edge services

    Get PDF
    The surge of the Internet traffic with exabytes of data flowing over operators’ mobile networks has created the need to rethink the paradigms behind the design of the mobile network architecture. The inadequacy of the 4G UMTS Long term Evolution (LTE) and even of its advanced version LTE-A is evident, considering that the traffic will be extremely heterogeneous in the near future and ranging from 4K resolution TV to machine-type communications. To keep up with these changes, academia, industries and EU institutions have now engaged in the quest for new 5G technology. In this paper we present the innovative system design, concepts and visions developed by the 5G PPP H2020 project SESAME (Small cEllS coordinAtion for Multi-tenancy and Edge services). The innovation of SESAME is manifold: i) combine the key 5G small cells with cloud technology, ii) promote and develop the concept of Small Cells-as-a-Service (SCaaS), iii) bring computing and storage power at the mobile network edge through the development of non-x86 ARM technology enabled micro-servers, and iv) address a large number of scenarios and use cases applying mobile edge computing

    A cloud-enabled small cell architecture in 5G networks for broadcast/multicast services

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The evolution of 5G suggests that communication networks become sufficiently flexible to handle a wide variety of network services from various domains. The virtualization of small cells as envisaged by 5G, allows enhanced mobile edge computing capabilities, thus enabling network service deployment and management near the end user. This paper presents a cloud-enabled small cell architecture for 5G networks developed within the 5G-ESSENCE project. This paper also presents the conformity of the proposed architecture to the evolving 5G radio resource management architecture. Furthermore, it examines the inclusion of an edge enabler to support a variety of virtual network functions in 5G networks. Next, the improvement of specific key performance indicators in a public safety use case is evaluated. Finally, the performance of a 5G enabled evolved multimedia broadcast multicast services service is evaluated.Peer ReviewedPostprint (author's final draft

    An adaptive system for real-time scalable video streaming with end- to-end qos control

    Get PDF
    This paper presents a real-time adaptive video streaming system based on the latest standardized video codec H.264/MPEG-4 AVC scalable extension (SVC). The system provides a full MPEG-21 media access framework over heterogeneous networks and terminals with end-to-end QoS control and multimedia adaptation based on SVC. This adaptive streaming system is composed of a server with a real-time SVC encoder, an adaptive network node, and a terminal with appropriate feedback of perceptual quality, network conditions and user preferences for adaptation support. The system facilitates a general content adaptation solution to achieve the end-to-end QoS control

    Evaluation of Video Quality Based on Objectively Estimated Metric

    No full text
    Multimedia applications, and especially encoded video services, are expected to play a major role in the 3rd generation (3G) and beyond mobile communication systems. Given that future service providers are expected to provide video applications at various price and quality levels, quick and economically affordable methods for preparing/encoding the offering media at various qualities are necessary to be developed. This paper presents a method for objective evaluation of the perceived quality of MPEG4 video content, based on a quantification of subjective assessments. Showing that subjectively derived perceived quality of service (PQoS) vs. bit rate curves can be successfully approximated by a group of exponential functions, the proposed method exploits a simple objective metric, which is obtained from the mean frame rate vs. bit rate curves of an encoded clip. The validity of this metric is assessed by comparing subjectively derived PQoS results to the corresponding ones, which come from the proposed objective method, showing that the proposed technique provides satisfactory PQoS estimation
    corecore